Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 759
Filtrar
1.
Eur J Med Res ; 29(1): 147, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429734

RESUMO

BACKGROUND: The aim of the study was to investigate whether the expression of CD27-CD38+ in interferon (IFN)-γ+CD4+ T cells stimulated by the specific antigen early secreted antigenic target-6 (ESAT-6)/culture filter protein-10 (CFP-10) could be a potential new therapeutic evaluation indicator for anti-tuberculosis (TB) treatment. METHODS: Newly diagnosed active pulmonary TB patients, latent TB infection (LTBI) and healthy controls were enrolled from January 2021 to December 2021. PTB patients were treated by standard anti-TB regimen 2HREZ/4HR (2 months of isoniazid (H), rifampin (R), ethambutol (E), and pyrazinamide (Z) followed by 4 months of isoniazid (H) and rifampin (R)). The difference of CD27-CD38+ expression in IFN-γ+CD4+ T cells before treatment, 2 months after treatment, and 6 months after treatment were compared. RESULTS: Total 45 PTB patients, 38 LTBI cases and 43 healthy controls were enrolled. The expression of CD27-CD38+ decreased significantly after anti-TB treatment and was comparable with that in LTBI and healthy controls when the 6-month anti-TB treatment course was completed. The decline rate of CD27-CD38+ between 6 months after treatment and baseline was positively correlated with erythrocyte sedimentation rate (r = 0.766, P < 0.0001), C-reactive protein (r = 0.560, P = 0.003) and chest computerized tomography severity score (r = 0.632, P = 0.0005). The area under receiver operator characteristic curve of CD27-CD38+ in distinguish pulmonary TB patients before and after treatment was 0.779. CONCLUSION: The expression of CD27-CD38+ in ESAT-6/CFP-10 stimulated IFN-γ+CD4+T cells can well reflect the changes of the disease before and after anti-TB treatment, which is expected to be a potential new therapeutic evaluation index. Clinical Registry number chiCTR1800019966.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Linfócitos T CD4-Positivos , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Isoniazida/metabolismo , Rifampina/metabolismo , Tuberculose/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico
2.
J Antibiot (Tokyo) ; 76(12): 720-727, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37821540

RESUMO

Mycobacterium tuberculosis is exposed to diverse stresses inside the host during dormancy. Meanwhile, many metabolic and transcriptional regulatory changes occur, resulting in physiological modifications that help M. tuberculosis to adapt to these stresses. The same physiological changes also cause antibiotic tolerance in dormant M. tuberculosis. However, the transcriptional regulatory mechanism of antibiotic tolerance during dormancy remains unclear. Here, we showed that the expression of Rv1255c, an uncharacterised member of the tetracycline repressor family of transcriptional regulators, is upregulated during different stresses and hypoxia-induced dormancy. Antibiotic tolerance and efflux activities of Mycobacterium smegmatis constitutively expressing Rv1255c were analysed, and interestingly, it showed increased isoniazid tolerance and efflux activity. The intrabacterial isoniazid concentrations were found to be low in M. smegmatis expressing Rv1255c. Moreover, orthologs of the M. tuberculosis katG, gene of the enzyme which activates the first-line prodrug isoniazid, are overexpressed in this strain. Structural analysis of isoforms of KatG enzymes in M. smegmatis identified major amino acid substitutions associated with isoniazid resistance. Thus, we showed that Rv1255c helps M. smegmatis tolerate isoniazid by orchestrating drug efflux machinery. In addition, we showed that Rv1255c also causes overexpression of katG isoform in M. smegmatis which has amino acid substitutions as found in isoniazid-resistant katG in M. tuberculosis.


Assuntos
Isoniazida , Mycobacterium smegmatis , Humanos , Antibacterianos/farmacologia , Antituberculosos/farmacologia , Antituberculosos/metabolismo , Proteínas de Bactérias/metabolismo , Catalase/química , Catalase/genética , Catalase/metabolismo , Isoniazida/farmacologia , Isoniazida/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia
3.
Basic Clin Pharmacol Toxicol ; 133(4): 402-417, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37272388

RESUMO

In this study, we aimed to determine whether asiatic acid (AA) exerts any therapeutic effects on rifampicin (RFP)- and isoniazid (INH)-induced liver injury and elucidate the underlying mechanisms. Briefly, liver injury in mice was induced via RFP and INH administration. We investigated the effects and potential action mechanisms of AA on liver injury using transcriptomics, metabolomics and various examinations. We found that AA significantly ameliorated the pathological changes in liver tissues and decreased the transaminase activity, inflammation and oxidative stress damage. Transcriptomics revealed 147 differentially expressed genes (DEGs) between the AA and model groups that were enriched in metabolic and mitogen-activated protein kinase (MAPK) signalling pathways. Metabolomics revealed 778 differentially expressed metabolites between the AA and model groups. Furthermore, integrated transcriptomics and metabolomics analyses revealed strong correlations between DEGs and differentially expressed metabolites and indicated that AA regulates the sphingolipid metabolism by inhibiting the expression of delta 4-desaturase, sphingolipid 1. Experimental results confirmed that AA inhibited the MAPK signalling pathway. In summary, AA inhibits inflammation and oxidative stress damage by regulating the sphingolipid metabolism pathway and blocking the MAPK signalling pathway, thereby relieving the RFP/INH-induced liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Animais , Isoniazida/toxicidade , Isoniazida/metabolismo , Rifampina/toxicidade , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fígado , Inflamação/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo
4.
Free Radic Biol Med ; 204: 20-27, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37094755

RESUMO

Acetylhydrazine (AcHZ), a major human metabolite of the widely-used anti-tuberculosis drug isoniazid (INH), was considered to be responsible for its serious hepatotoxicity and potentially fatal liver injury. It has been proposed that reactive radical species produced from further metabolic activation of AcHZ might be responsible for its hepatotoxicity. However, the exact nature of such radical species remains not clear. Through complementary applications of ESR spin-trapping and HPLC/MS methods, here we show that the initial N-centered radical intermediate can be detected and identified from AcHZ activated by transition metal ions (Mn(III)Acetate and Mn(III) pyrophosphate) and myeloperoxidase. The exact location of the radical was found to be at the distal-nitrogen of the hydrazine group by 15N-isotope-labeling techniques via using 15N-labeled AcHZ we synthesized. Additionally, the secondary C-centered radical was identified unequivocally as the reactive acetyl radical by complementary applications of ESR spin-trapping and persistent radical TEMPO trapping coupled with HPLC/MS analysis. This study represents the first detection and unequivocal identification of the initial N-centered radical and its exact location, as well as the reactive secondary acetyl radical. These findings should provide new perspectives on the molecular mechanism of AcHZ activation, which may have potential biomedical and toxicological significance for future research on the mechanism of INH-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hidrazinas , Humanos , Hidrazinas/metabolismo , Isoniazida/metabolismo , Antituberculosos/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres
5.
EMBO Rep ; 24(6): e55593, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37079766

RESUMO

Mycobacterium tuberculosis (Mtb) secretes extracellular vesicles (EVs) containing a variety of proteins, lipoproteins, and lipoglycans. While emerging evidence suggests that EVs contribute to tuberculosis pathogenesis, the factors and molecular mechanisms involved in mycobacterial EV production have not been identified. In this study, we use a genetic approach to identify Mtb proteins that mediate vesicle release in response to iron limitation and antibiotic exposure. We uncover a critical role for the isoniazid-induced, dynamin-like proteins, IniA and IniC, in mycobacterial EV biogenesis. Further characterization of a Mtb iniA mutant shows that the production of EVs enables intracellular Mtb to export bacterial components into the extracellular environment to communicate with host cells and potentially modulate the immune response. The findings advance our understanding of the biogenesis and functions of mycobacterial EVs and provide an avenue for targeting vesicle production in vivo.


Assuntos
Vesículas Extracelulares , Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/metabolismo , Vesículas Extracelulares/metabolismo , Isoniazida/metabolismo , Dinaminas/genética , Dinaminas/metabolismo
6.
J Ethnopharmacol ; 310: 116387, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36948265

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rhus chinensis Mill. is a species of the genus Rhus belonging to the family Anacardiaceae. Its fruits used to treat/prevent liver related diseases (e.g., jaundice and hepatitis) in folk medicine. Otherwise, the effects and underlying mechanisms of the fruits on the prevention of isoniazid and rifampicin-caused liver injury have not been investigated. AIM OF THE STUDY: To study the preventive effects and mechanisms of the Rhus chinensis Mill. fruits on isoniazid and rifampicin-caused liver injury. MATERIALS AND METHODS: This experiment was based on rifampicin (75 mg/kg/day) and isoniazid (75 mg/kg/day)-induced liver damage model to explain the pharmacological effects of Rhus chinensis Mill. fruits. The prevention of the extract from Rhus chinensis Mill. fruits on isoniazid and rifampicin-caused liver injury were evaluated using biochemical parameters, histopathological analysis, and immunofluorescence technique. Apart from that, the potential molecular mechanisms were elucidated by analyzing the expression of such crucial proteins participated in oxidative stress, apoptosis, and bile acid transport. RESULTS: The extract from Rhus chinensis Mill. fruits significantly reduced the levels of ALT, AST, TBIL, ALP and MDA. Besides, the extract, especially 800 mg/kg b.w., was remarkably decreased the content of TNF-α,IL-6 and IL-1ß, restored the levels of GSH and SOD. The results of Western blot also presented that the extract could activate the Nrf2 protein pathway and inhibit the expression of CYP2E1 to reduce oxidative stress. Meanwhile, the extract significantly up-regulated the expressions of BSEP and Mrp2 to regulate the transport of bile acid, and alleviated the cellular apoptosis via adjusting the expression of Bax and Bcl-2 proteins. CONCLUSIONS: Rhus chinensis Mill. fruits can prevent the liver injury induced by isoniazid and rifampicin in mice through adjusting the expressions of multiple proteins in oxidative stress, apoptosis, and bile acid transport pathways. This paper may provide scientific basis for the fruits as a Chinese medicine to prevent/cure liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Rhus , Camundongos , Animais , Isoniazida/toxicidade , Isoniazida/metabolismo , Rifampina/metabolismo , Rhus/química , Frutas , Fígado , Estresse Oxidativo , Ácidos e Sais Biliares/metabolismo , Apoptose , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
7.
Nat Prod Res ; 37(10): 1687-1692, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35876096

RESUMO

Biotransformation of isoniazid produced isonicotinic acid (1), isonicotinic acid N-oxide (2), and isonicotinamide (3) which were isolated by column chromatography using silica gel and Sephadex LH 20 and elucidated using various spectroscopies. This is the first report for isolation of 2. Antituberculosis activity was evaluated against Mycobacterium tuberculosis strains: drug sensitive (DS), multiple drug resistant (MDR) and extensively drug resistant (XDR). 1-3 and isoniazid showed MICs of 63.49, 0.22, 15.98 and 0.88 µM, respectively, against the DS strain. For the MDR strain, 2 and 3 exhibited MICs of 28.06 and > 1000 µM, respectively, while 1 was inactive. Moreover, 2 had an MIC of 56.19 µM against XDR strain, while 1 and 3 were inactive. Docking simulation using enoyl ACP reductase (InhA) revealed favorable protein-ligand interactions. In silico study of pharmacokinetics and hepatotoxicity predicted 1-3 to have good oral bioavailability and 2 to have a lower hepatoxicity probability than isoniazid.


Assuntos
Isoniazida , Mycobacterium tuberculosis , Isoniazida/farmacologia , Isoniazida/química , Isoniazida/metabolismo , Antituberculosos/farmacologia , Antituberculosos/química , Aspergillus niger/metabolismo , Ácidos Isonicotínicos/metabolismo , Óxidos , Testes de Sensibilidade Microbiana , Biotransformação , Proteínas de Bactérias/metabolismo
8.
Mol Biol Rep ; 50(2): 1019-1031, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36383336

RESUMO

BACKGROUND: The antituberculosis drugs (ATDs), isoniazid, rifampicin, pyrazinamide and ethambutol prompt extreme hepatic and renal damage during treatment of tuberculosis. The present study aimed to investigate protective potential of naringenin against ATDs induced hepato-renal injury. METHODS: Rats were administered with ATDs (pyrazinamide; 210, ethambutol; 170, isoniazid; 85, rifampicin; 65 mg/kg b.wt) orally for 8 weeks (3 days/week) followed by naringenin at three different doses (10, 20 and 40 mg/kg b.wt) conjointly for 8 weeks (3 days/week alternately to ATDs administration) and silymarin (50 mg/kg b.wt) as positive control. RESULTS: Exposure to ATDs caused significant increase in interleukin-6 (IL-6), triglycerides, cholesterol, bilirubin whereas depletion in insulin like growth factor-1 (IGF-1), albumin and glucose in serum. Endogenous antioxidant enzymes glutathione reductase (GR), glutathione peroxidase (GPx) and glucose-6-phosphate-dehydrogenase (G-6-PDH) were diminished in liver and kidney tissues with parallel increase in triglycerides, cholesterol, microsomal LPO and aniline hydroxylase (CYP2E1 enzyme). Ultra-structural observations of liver and kidney showed marked deviation in plasma membranes of various cellular and sub-cellular organelles after 8 weeks of exposure to ATDs. CONCLUSIONS: Conjoint treatment of naringenin counteracted ATDs induced toxic manifestations by regulating IL-6, IGF-1, CYP2E1, biochemical and ultra-structural integrity in a dose dependent manner. Naringenin has excellent potential to protect ATDs induced hepato-renal injury by altering oxidative stress, modulation of antioxidant enzymes, serum cytokines and ultra-structural changes.


Assuntos
Antituberculosos , Interleucina-6 , Ratos , Animais , Antituberculosos/toxicidade , Interleucina-6/metabolismo , Isoniazida/toxicidade , Isoniazida/metabolismo , Pirazinamida/metabolismo , Pirazinamida/farmacologia , Etambutol/toxicidade , Etambutol/metabolismo , Rifampina/toxicidade , Rifampina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/farmacologia , Ratos Wistar , Fígado/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo
9.
Appl Environ Microbiol ; 88(20): e0133722, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36190258

RESUMO

Two-component systems (TCSs) act as common regulatory systems allowing bacteria to detect and respond to multiple environmental stimuli, including cell envelope stress. The MtrAB TCS of Actinobacteria is critical for cell wall homeostasis, cell proliferation, osmoprotection, and antibiotic resistance, and thus is found to be highly conserved across this phylum. However, how precisely the MtrAB TCS regulates cellular homeostasis in response to environmental stress remains unclear. Here, we show that the MtrAB TCS plays an important role in the tolerance to different types of cell envelope stresses, including environmental stresses (i.e., oxidative stress, lysozyme, SDS, osmotic pressure, and alkaline pH stresses) and envelope-targeting antibiotics (i.e., isoniazid, ethambutol, glycopeptide, and ß-lactam antibiotics) in Dietzia sp. DQ12-45-1b. An mtrAB mutant strain exhibited slower growth compared to the wild-type strain and was characterized by abnormal cell shapes when exposed to various environmental stresses. Moreover, deletion of mtrAB resulted in decreased resistance to isoniazid, ethambutol, and ß-lactam antibiotics. Further, Cleavage under targets and tagmentation sequencing (CUT&Tag-seq) and electrophoretic mobility shift assays (EMSAs) revealed that MtrA binds the promoters of genes involved in peptidoglycan biosynthesis (ldtB, ldtA, murJ), hydrolysis (GJR88_03483, GJR88_4713), and cell division (ftsE). Together, our findings demonstrated that the MtrAB TCS is essential for the survival of Dietzia sp. DQ12-45-1b under various cell envelope stresses, primarily by controlling multiple downstream cellular pathways. Our work suggests that TCSs act as global sensors and regulators in maintaining cellular homeostasis, such as during episodes of various environmental stresses. The present study should shed light on the understanding of mechanisms for bacterial adaptivity to extreme environments. IMPORTANCE The multilayered cell envelope is the first line of bacterial defense against various extreme environments. Bacteria utilize a large number of sensing and regulatory systems to maintain cell envelope homeostasis under multiple stress conditions. The two-component system (TCS) is the main sensing and responding apparatus for environmental adaptation. The MtrAB TCS highly conserved in Actinobacteria is critical for cell wall homeostasis, cell proliferation, osmoprotection, and antibiotic resistance. However, how MtrAB works with regard to signals impacting changes to the cell envelope is not fully understood. Here, we found that in the Actinobacterium Dietzia sp. DQ12-45-1b, a TCS named MtrAB is pivotal for ensuring normal cell growth as well as maintaining proper cell morphology in response to various cell envelope stresses, namely, by regulating the expression of cell envelope-related genes. Our findings should greatly advance our understanding of the adaptive mechanisms responsible for maintaining cell integrity in times of sustained environmental shocks.


Assuntos
Actinobacteria , Actinomycetales , Muramidase/metabolismo , Peptidoglicano/metabolismo , Etambutol/metabolismo , Isoniazida/metabolismo , Actinomycetales/genética , Parede Celular/metabolismo , Actinobacteria/genética , Actinobacteria/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , beta-Lactamas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
10.
Chem Pharm Bull (Tokyo) ; 70(11): 805-811, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36070932

RESUMO

The protective effect of phloridzin (PHL) and its potential mechanism were examined in mice with liver injury induced by isoniazid (INH) and rifampicin (RFP). The mice were randomly divided into normal control group, model group, low (80 mg/kg), medium (160 mg/kg) and high (320 mg/kg) phloridzin-treated groups. After 28 d treatment, blood and liver tissue were collected and analysed. The results revealed that PHL regulated liver function related indicators and reduced the pathological tissue damage, indicating that PHL significantly alleviated the liver injury. Furthermore, the level of CYP450 enzyme, the expression of CYP3A4, CYP2E1, heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA and protein were inhibited by PHL. These results indicated that PHL exerts a protecting effect against liver injury induced by combination of RFP and INH. The potential mechanisms may be concerned with the activation of Nrf2/HO-1 signaling pathway containing its key antioxidant enzymes and regulation of CYP3A4 and CYP2E1.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Animais , Isoniazida/metabolismo , Isoniazida/farmacologia , Rifampina/metabolismo , Rifampina/farmacologia , Florizina/metabolismo , Florizina/farmacologia , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/farmacologia , Citocromo P-450 CYP3A/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fígado , Estresse Oxidativo
11.
Drug Metab Dispos ; 50(11): 1429-1433, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35768074

RESUMO

Arylamine N-acetyltransferases (NATs) are drug-metabolizing enzymes that are essential for the metabolism of endogenous substrates and xenobiotics. The molecular characteristics of NATs have been extensively investigated in humans but remain to be investigated in common marmosets and pigs, animal species that are often used in drug metabolism studies. In this study, marmoset NAT1 and pig NAT1 cDNAs were isolated from liver samples and were characterized by molecular analyses and drug-metabolism assays. These NAT genes were intronless and formed gene clusters with one other NAT gene in the genome, just as human NAT genes do. Marmoset NAT1 and pig NAT1 amino acid sequences showed high sequence identities (94% and 85%, respectively) to human NAT1. Phylogenetic analysis indicated that marmoset NAT1 and pig NAT1 were more closely clustered with human NATs than with rat or mouse NATs. Marmoset NAT1 and pig NAT1 mRNAs were expressed in all the tissue types analyzed, with the expression levels being highest in the small intestine. Metabolic assays using recombinant proteins found that marmoset NAT1 and pig NAT1 metabolized human NAT substrates p-aminobenzoic acid, 2-aminofluorene, sulfamethazine, and isoniazid. Marmoset NAT1 and pig NAT1 substantially acetylated p-aminobenzoic acid and 2-aminofluorene relevant human NAT1, but their activities were lower toward sulfamethazine and isoniazid than those of the relevant human NAT2. Therefore, marmoset and pig NATs are functional enzymes with molecular similarities to human NAT1, but their substrate specificities, while similar to human NAT1, differ somewhat from human NAT2. SIGNIFICANCE STATEMENT: Marmoset N-acetyltransferase NAT1 and pig NAT1 were identified and showed high sequence identities to human NAT1. These NAT mRNAs were expressed in various tissues. Marmoset and pig NAT1s acetylated typical human NAT substrates, although their substrate specificities differed somewhat from human NAT2. Marmoset NAT1 and pig NAT1 have similarities with human NAT1 in terms of molecular and enzymatic characteristics.


Assuntos
Arilamina N-Acetiltransferase , Callithrix , Ácido 4-Aminobenzoico/metabolismo , Acetiltransferases/genética , Animais , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Callithrix/metabolismo , Fluorenos , Humanos , Isoniazida/metabolismo , Camundongos , Filogenia , Ratos , Proteínas Recombinantes/metabolismo , Sulfametazina , Suínos
12.
Yi Chuan ; 44(6): 501-509, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35729098

RESUMO

Isoniazid (INH) is a first-line anti-tuberculosis drug which can cause idiosyncratic liver injury, while the underlying mechanisms need to be further elucidated. In this study, we explored the time series gene expression profiling of a hepatocyte cell line under isoniazid treatment. Through cluster analysis and enrichment analysis of differentially expressed genes, we revealed a total of 6 gene clusters and a series of pathways related to hepatotoxicity, and 13 key candidate genes were identified according to the protein-protein interaction (PPI) network analysis and maSigPro analysis. These findings lay a foundation for understanding the mechanisms of isoniazid -induced liver toxicity and provide new target genes for the monitoring and treatment of INH-induced hepatotoxicity in the future.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Isoniazida , Antituberculosos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/genética , Expressão Gênica , Humanos , Isoniazida/metabolismo , Isoniazida/toxicidade , Fígado/metabolismo , Fatores de Tempo
13.
Tuberculosis (Edinb) ; 134: 102201, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344917

RESUMO

Heat shock proteins are essential in maintaining cellular protein function, especially during stress. Their influence in managing drug-induced stress in Tuberculosis is not clearly understood. AIMS: Study the expression of select genes of the DnaK/ClpB chaperone network to evaluate their role in stress response in Mycobacterium tuberculosis clinical isolates during exposure to Isoniazid (INH) and Rifampicin (RIF). METHODS: Sanger sequencing to detect drug-resistant mutations followed by Drug Susceptibility Testing and Minimum Inhibitory Concentration determination. Culturing the bacilli in vitro, exposed to 1/4, 1/2 and 1 × MIC, and RNA quantification of dnaK, dnaJ1, grpE and clpB genes by using Real-time PCR. RESULTS: Susceptible isolates showed marginal down-regulation of two genes for INH, whereas all genes under-expressed against RIF. INH-resistant isolates had distinct expression profiles for inhA-15 and katG315 mutants. RIF-resistant bacilli did not have significant differential expression. MDR isolate showed up-regulation of all the four genes, with two genes over-expressing (≥4-fold). CONCLUSIONS: We observed characteristic gene expression profiles for each isolate in response to lethal and sub-lethal doses of INH and RIF. This provides insight into the role of DnaK/ClpB chaperone network in managing drug-induced stress and facilitating resistance. Further, the knowledge could provide targets for new drugs and augmenters.


Assuntos
Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catalase/genética , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Isoniazida/metabolismo , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Rifampina/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
14.
Proteins ; 90(5): 1142-1151, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34981576

RESUMO

Tuberculosis is an ancient disease of mankind, and its causative bacterium is Mycobacterium tuberculosis. Isoniazid is one of the most effective first-line antituberculosis drugs. As prodrugs, it and its derivative ethionamide act on enoyl-acyl carrier protein reductase (InhA) after being oxidized in bacteria, and kill the bacteria by inhibiting the formation of M. tuberculosis cell walls. However, the S94A mutation of InhA causes M. tuberculosis to develop cross-resistance to isoniazid and ethionamide. This work is dedicated to studying the cross-resistance mechanism of isoniazid and ethionamide through theoretical calculations. First, thermodynamic integral simulations are used to accurately calculate the relative binding energy of two drugs in the mutant and wild-type system. Furthermore, through classic molecular dynamic simulations and molecular mechanics generalized-Born surface area calculation, some key residues are identified and the binding affinity of isoniazid and ethionamide reduced by 9-13 kcal/mol due to S94A mutation. The hydrogen bond between Ala94 and isoniazid (ethionamide) disappeared and the energy contribution of Ala94 decreased after the mutation. In addition, the dynamic network analysis indicated that the mutation of Ser94 also indirectly affected the conformation of key residues such as Met147, Thr196, and Leu97, resulting in a reduction in the energy contribution of these residues. Finally, the binding conformation of isoniazid and ethionamide has also undergone major changes. The obtained results could provide valuable information for the future molecular design to overcome the drug resistance.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Proteínas de Bactérias/química , Etionamida/metabolismo , Etionamida/farmacologia , Humanos , Isoniazida/metabolismo , Isoniazida/farmacologia , Simulação de Dinâmica Molecular , Mutação , Mycobacterium tuberculosis/metabolismo , Oxirredutases/metabolismo , Termodinâmica
15.
Artigo em Inglês | MEDLINE | ID: mdl-34923301

RESUMO

Isoniazid is a first-line drug for the treatment of tuberculosis, a bacterial disease caused by Mycobacterium tuberculosis. Its terminal amino group is highly reactive, leading to significant metabolic deactivation, drug interactions and hepatotoxicity. It is speculated that the activity of isoniazid derivatives is, in part, related to the cleavage of the protecting group. Therefore, this study aimed to evaluate the cleavage characteristics of previously developed isoniazid derivatives through kinetic studies by high-performance liquid chromatography with ultraviolet-diode array detectio to establish a comparison between the rates of the process and the respective activities against M. tuberculosis. Chromatographic separations were performed on an XDB C18 column coupled to an XDB C18 precolumn. The mobile phase consisted of ultrapure water and acetonitrile in gradient mode. The flow rate was 1.0 mL/min, the injection volume was 20 µL, and the detection wavelengths were 230 nm (derivatives and isatins) and 270 nm (isoniazid). Incubation of derivatives was carried out for 5 days in 10 mmol/L phosphate buffer solution (pH 3.0, 7.4, 8.0) or in fetal bovine serum at 37 °C. The incubation reduced the concentration of the derivatives and led to the formation of isoniazid in a first-order kinetic reaction. Isoniazid formation was logarithmically correlated with the minimum inhibitory concentration of the derivatives. The results showed that higher cleavage rates are associated with greater activities against M. tuberculosis, providing important information for the development of future generations of isoniazid derivatives and for screening drug candidates for the treatment of tuberculosis.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Hidrazinas/química , Isoniazida , Mycobacterium tuberculosis/efeitos dos fármacos , Isoniazida/análise , Isoniazida/química , Isoniazida/metabolismo , Isoniazida/farmacologia , Cinética , Limite de Detecção , Modelos Lineares , Testes de Sensibilidade Microbiana , Reprodutibilidade dos Testes
16.
Biomed Pharmacother ; 144: 112362, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34710838

RESUMO

Isoniazid (INH) is one of the two most effective first-line antitubercular drugs and is still used at the present time as a scaffold for developing new compounds to fight TB. In a previous study, we have observed that an INH derivative, an hydrazide N'-substituted with a C10acyl chain, was able to counterbalance its smaller reactivity with a higher membrane permeability. This resulted in an improved performance against the most prevalent Mycobacterium tuberculosis (Mtb) resistant strain (S315T), compared to INH. In this work, we have designed two new series of INH derivatives (alkyl hydrazides and hydrazones) with promising in silico properties, namely membrane permeabilities and spontaneous IN* radical formation. The kinetics, cytotoxicity, and biological activity evaluations confirmed the in silico predictions regarding the very high reactivity of the alkyl hydrazides. The hydrazones, on the other hand, showed very similar behavior compared to INH, particularly in biological tests that take longer to complete, indicating that these compounds are being hydrolyzed back to INH. Despite their improved membrane permeabilities, the reactivities of these two series are too high, impairing their overall performance. Nevertheless, the systematic data gathered about these compounds have showed us the need to find a balance between lipophilicity and reactivity, which is paramount to devise better INH-based derivatives aimed at circumventing Mtb resistance.


Assuntos
Antituberculosos/farmacologia , Membrana Celular/metabolismo , Desenho de Fármacos , Isoniazida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/síntese química , Antituberculosos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Catalase/genética , Catalase/metabolismo , Hidrólise , Isoniazida/análogos & derivados , Isoniazida/síntese química , Isoniazida/metabolismo , Cinética , Estrutura Molecular , Mutação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Permeabilidade , Relação Estrutura-Atividade
17.
Biomed Res Int ; 2021: 9916328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34541001

RESUMO

Ferroptosis and inflammation induced by cerebral hemorrhage result in an excessive inflammatory response and irreversible neuronal injury. Alleviating ferroptosis might be an effective way to prevent neuroinflammatory injury and promote neural functional recovery. Pyridoxal isonicotinoyl hydrazine (PIH), a lipophilic iron-chelating agent, has been reported to reduce excess iron-induced cytotoxicity. However, whether PIH could ameliorate the effects of hemorrhagic stroke is not completely understood. In the present study, the preventive effects of PIH in an intracerebral hemorrhage (ICH) mouse model were investigated. Neurological score, rotarod test, and immunofluorescence around the hematoma were assessed to evaluate the effects of PIH on hemorrhagic injury. The involvement of ferroptosis and inflammation was also examined in vitro to explore the underlying mechanism. Results showed that administration of PIH prevented neuronal cell death and reduced lipid peroxidation in Erastin-treated PC-12 cells. In vivo, mice treated with PIH after ICH attenuated neurological deficit scores. Additionally, we found PIH reduced ROS production, iron accumulation, and lipid peroxidation around the hematoma peripheral tissue. Meanwhile, ICH mice treated with PIH showed an upregulation of the key ferroptosis enzyme, glutathione peroxidase 4, and downregulation of cyclooxygenase-2. Moreover, PIH administration inhibited proinflammatory polarization and reduced interleukin-1 beta and tumor necrosis factor alpha in ICH mice. Collectively, these results demonstrated that PIH protects mice against hemorrhage stroke, which was associated with mitigation of inflammation and ferroptosis.


Assuntos
Hemorragia Cerebral/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Isoniazida/análogos & derivados , Piridoxal/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Hemorragia Cerebral/metabolismo , Compostos Férricos/farmacologia , Ferroptose/fisiologia , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Ferro/metabolismo , Quelantes de Ferro/farmacologia , Isoniazida/metabolismo , Isoniazida/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Piridoxal/metabolismo , Piridoxal/farmacologia
18.
J Mater Chem B ; 9(38): 8056-8066, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34491255

RESUMO

Osteoarticular Tuberculosis (TB) is a challenging issue because of its chronicity and recurrence. Many drug delivery systems (DDSs) have been developed for general chemotherapy. Herein, we take advantage of instant hydrogelation to in situ encapsulate drugs onto implants intraoperatively, optimizing the drug release profile against osteoarticular TB. First-line chemodrugs, i.e. rifampicin (RFP) and isoniazid (INH) are firstly loaded on tricalcium phosphate (TCP). Then, the encapsulating hydrogel is fabricated by dipping in chitosan (CS) and ß-glycerophosphate (ß-GP) solution and heating at 80 °C for 40 min. The hydrogel encapsulation inhibits explosive drug release initially, but maintains long-term drug release (INH, 158 days; RFP, 53 days) in vitro. Therefore, this technique could inhibit bone destruction and inflammation from TB effectively in vivo, better than our previous ex situ prepared DDSs. The encapsulating technology, i.e. instant hydrogelation of drug-loaded implants, shows potential for regulating the type and ratio of drugs, elastic and viscous modulus of the hydrogel according to the state of illness intraoperatively for optimal drug release.


Assuntos
Antituberculosos/uso terapêutico , Portadores de Fármacos/química , Hidrogéis/química , Tuberculose Osteoarticular/tratamento farmacológico , Animais , Antituberculosos/química , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Fosfatos de Cálcio/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Fêmur/patologia , Glicerofosfatos/química , Isoniazida/química , Isoniazida/metabolismo , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Camundongos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/fisiologia , Porosidade , Próteses e Implantes , Rifampina/química , Rifampina/metabolismo , Rifampina/farmacologia , Rifampina/uso terapêutico
19.
Clin Pharmacol Ther ; 110(6): 1455-1466, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33837535

RESUMO

Tuberculosis (TB) remains a leading cause of infectious death worldwide, and poverty is a major driver. Clinically, TB presents as "latent" TB and active TB disease, and the treatment for each is different. TB drugs can display "early bactericidal activity (EBA)" and / or "sterilizing activity" (clearing persisters). Isoniazid is excellent at the former, and rifampin is excellent at the latter. Pyrazinamide and ethambutol complete the first-line regimen for drug-susceptible TB, each playing a specific role. Drug-resistant TB is an increasing concern, being met, in part, with repurposed drugs (including moxifloxacin, levofloxacin, linezolid, clofazimine, and beta-lactams) and new drugs (including bedaquiline, pretomanid, and delamanid). One challenge is to select drugs without overlapping adverse drug reaction profiles. QTc interval prolongation is one such concern, but to date, it has been manageable. Drug penetration into organism sanctuaries, such as the central nervous system, bone, and pulmonary TB cavities remain important challenges. The pharmacodynamics of most TB drugs can be described by the area under the curve (AUC) divided by the minimal inhibitory concentration (MIC). The hollow fiber infection model (HFIM) and various animal models (especially mouse and macaque) allow for sophisticated pharmacokinetic/pharmacodynamic experiments. These experiments may hasten the selection of the most potent, shortest possible regimens to treat even extremely drug resistant TB. These findings can be translated to humans by optimizing drug exposure in each patient, using therapeutic drug monitoring and dose individualization.


Assuntos
Antituberculosos/administração & dosagem , Antituberculosos/metabolismo , Tuberculose/tratamento farmacológico , Tuberculose/metabolismo , Animais , Monitoramento de Medicamentos/métodos , Quimioterapia Combinada , Humanos , Isoniazida/administração & dosagem , Isoniazida/metabolismo , Levofloxacino/administração & dosagem , Levofloxacino/metabolismo , Rifampina/administração & dosagem , Rifampina/metabolismo , Resultado do Tratamento , Tuberculose/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo
20.
Chem Biol Drug Des ; 97(6): 1137-1150, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33638304

RESUMO

Several rationally designed isoniazid (INH), pyrazinamide (PZA) and ciprofloxacin (CPF) derivatives were conveniently synthesized and evaluated in vitro against H37Rv Mycobacterium tuberculosis (M. tb) strain. CPF derivative 16 displayed a modest activity (MIC = 16 µg/ml) and was docked into the M. tb DNA gyrase. Isoniazid-pyrazinoic acid (INH-POA) hybrid 21a showed the highest potency in our study (MIC = 2 µg/ml). It also retained its high activity against the other tested M. tb drug-sensitive strain (DS) V4207 (MIC = 4 µg/ml) and demonstrated negligible cytotoxicity against Vero cells (IC50  ≥ 64 µg/ml). Four tested drug-resistant (DR) M. tb strains were refractory to 21a, similar to INH, whilst being sensitive to CPF. Compound 21a was also inactive against two non-tuberculous mycobacterial (NTM) strains, suggesting its selective activity against M. tb. The noteworthy activity of 21a against DS strains and its low cytotoxicity highlight its potential to treat DS M. tb.


Assuntos
Antituberculosos/síntese química , Ciprofloxacina/análogos & derivados , Isoniazida/análogos & derivados , Pirazinamida/análogos & derivados , Animais , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Sítios de Ligação , Domínio Catalítico , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Ciprofloxacina/química , Ciprofloxacina/metabolismo , Ciprofloxacina/farmacologia , DNA Girase/química , DNA Girase/metabolismo , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Isoniazida/metabolismo , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Conformação Molecular , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Micobactérias não Tuberculosas/efeitos dos fármacos , Pirazinamida/metabolismo , Pirazinamida/farmacologia , Relação Estrutura-Atividade , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...